MASSENSPEKTROMETRISCHE UNTERSUCHUNG VON PERPHENYL-CYCLOSILANEN, PERPHENYL-CYCLOGERMANEN UND EINEM PER-PHENYL-CYCLOSTANNAN¹

KLAUS KÜHLEIN* UND WILHELM P. NEUMANN Institut für Organische Chemie der Universität Giessen (Deutschland) (Eingegangen den 24. Mai 1968)

SUMMARY

In the mass spectrometer cyclic phenyl derivatives, $(Ph_2Si)_n$, n=4, 5, 6, and $(Ph_2Ge)_n$, n=4, 5, 6, give the respective molecular ions and fragment series resulting from stepwise cleavage of neutral or positively charged Ph_2Si and Ph_2Ge moieties. In addition, a McLafferty-type rearrangement yields Ph_3Si and Ph_3Ge fragments. Phenyl cleavage occurs less frequently. $Ph_{12}Sn_6$, under the same conditions, is immediately decomposed to Sn-Sn and Ph_nSn fragments (n=1, 2, 3, 4).

ZUSAMMENFASSUNG

Im Massenspektrometer entstehen aus cyclischen Phenylverbindungen $(Ph_2Si)_n$, n=4, 5, 6, und $(Ph_2Ge)_n$, n=4, 5, 6, die entsprechenden Molekülionen und daraus Abbaureihen durch schrittweise Abspaltung von ungeladenen oder kationischen Ph₂Si- bzw. Ph₂Ge-Einheiten. Daneben liefert eine der McLafferty-Umlagerung analoge Fragmentierung Ph₃Si- bzw. Ph₃Ge-Teilchen. Phenyl-Abspaltung tritt seltener auf. Ph₁₂Sn₆ wird unter denselben Bedingungen gleich zu Sn-Sn- bzw. Ph_nSn-Einheiten, n=1, 2, 3, 4, abgebaut.

EINLEITUNG

Kürzlich beschrieben wir Octaphenylcyclotetragerman I, Decaphenylcyclopentagerman II und Dodecaphenylcyclohexagerman III^{2,3}. Damit ist auch für "Diphenyl-germanium" (Ph_2Ge)_n cyclische Struktur mit vierbindigen Ge-Atomen bewie-

* Jetzige Adresse: Farbwerke Hoechst A.-G., Frankfurt/Main-Hoechst.

sen, nachdem Ähnliches bereits für "Diphenylsilicium" $(Ph_2Si)_n$ (n=4, 5, 6) durch Gilman *et al.*⁴⁻⁶ und für "Diphenylzinn" $(Ph_2Sn)_n^{7,8}$ gezeigt wurde. Obwohl die Strukturen I, II und III klar aus Molekulargewichtsbestimmungen, Bausteinanalysen und anderen Reaktionen folgen^{2.3}, erschien uns eine zusätzliche Sicherung durch massenspektrometrische Untersuchungen wünschenswert. Diese waren auch deshalb von Interesse, weil bis dahin kaum massenspektrometrische Untersuchungen komplizierterer Organogermanium-Verbindungen bekannt waren⁹*.

Wegen der hohen Molekulargewichte (für III, Mol.-Gew. 1360.8) und wegen der verschiedenen Ge-Isotopen waren von vorneherein recht komplizierte Massenspektren zu erwarten. Deshalb hielten wir es für nötig, zunächst mit den analogen Phenyl-cyclosilanen⁴⁻⁶ Erfahrungen zu sammeln.

A. PERPHENYLCYCLOSILANE

Die Dissoziationsenergie der Si-Si-Bindung liegt bei 53 kcal/Mol¹¹, die der Ph-Si-Bindung etwa bei 77 kcal/Mol. Da für die Dissoziation eines H-Atoms aus

TABELLE I

KATIONEN, DIE BEI DER MASSENSPEKTROMETRIE VON Ph₈Si₄, Ph₁₀Si₅ und Ph₁₂Si₆ Auftreten

m/e	Kation	Intensitäten			
		Ph ₈ Si ₄	Ph ₁₀ Si ₅	Ph12Si6	
1094	Ph ₁₂ Si ₆			1	
912	Ph ₁₀ Si ₅		16		
834	Ph ₉ Si ₅		1	2	
757	Ph ₈ Si ₅		1	8	
729	Ph ₈ Si ₄	14	26	10	
680	Ph ₇ Si ₅			3	
652	Ph ₇ Si ₄	2	65	6	
575	Ph ₆ Si ₄		28	10	
547	Ph _o Si ₁	4	10	6	
470	Ph ₃ Si ₃	54	62	70	
442	Ph ₅ Si ₂	4	9	4	
393	Ph ₄ Si ₃	20	3	25	
365	Ph₄Si ₂	14	19	16	
288	Ph ₃ Si ₂	22	20	20	
259	Ph ₃ Si	100	100	100	
210	Ph ₂ Si ₂	10	7	7	
182	Ph ₂ Si	25	51	35	
154	Ph ₂	7	3	3	
105	PhSi	49	28	26	

dem Phenylrest 102 kcal/Mol erforderlich sind, ist zu erwarten, dass durch Elektronenbeschuss im Massenspektrometer zuerst ein Elektron aus einer Si-Si-Bindung herausgelöst wird. Tabelle 1 zeigt die durch Elektroneneinwirkung im Massenspektrometer entstehenden Kationen. Ausserdem treten sicherlich auch ungeladene Teil-

^{*} Nach Abschluss unserer Arbeiten¹ erschienen weitere Arbeiten über Verbindungen R₄Ge¹⁰.

J. Organometal. Chem., 14 (1968) 317-325

chen samt radikalischen oder carbenartigen auf. Auf diese kann, wie gleich gezeigt wird, mit Sicherheit geschlossen werden*.

(1). Octaphenyl-cyclotetrasilan

Das folgende Schema 1 enthält den Versuch, alle beim Cyclotetrasilan IV nachgewiesenen Si-haltigen Kationen in einen vernünftigen Zusammenhang zu bringen. Überraschend ist, dass das häufigste Kation, Ph_3Si^+ , überhaupt nicht als Baustein im Molekül enthalten ist. Dieses besteht, wie einwandfrei erwiesen⁴⁻⁶, ausschliesslich aus Ph_2Si -Einheiten. Offensichtlich erleiden mehrere grössere Kationen beim weiteren Zerfall im Massenspektrometer Fragmentierungen (1) vom Typ der McLafferty-Umlagerung**, hier unter Wanderung von Phenylresten. Vernünftig ist die Annahme, dass diese (hauptsächlich) von mittelständigen Si-Atomen stammen:

Das rechte Si-Atom kann dabei auch als Radikal oder Kation austreten. Wir formulieren hier Phenylwanderungen zwischen benachbarten Si-Atomen, ohne damit andere Möglichkeiten, z.B. die Beteiligung y-ständiger Kettenglieder, ausschliessen zu wollen***.

Für die Abschätzung der Möglichkeiten ist das häufige Auftreten der Ionen Ph_2Si^+ und sogar PhSi⁺ wichtig, siehe Tabelle 1. Es wird damit klar, dass Teilchen mit 5 oder sogar nur 4 Aussenelektronen am Si-Atom existenzfähig sind und eine solche Lebensdauer haben, dass sie im Massenspektrometer nachweisbar sind. Also darf man, solange keine günstigeren Möglichkeiten bestehen, auch grössere Teilchen mit einer so schwachen Besetzung der 3*p*- und 3*d*-Bahnen am Si annehmen,

Überraschend ist das häufige Auftreten des Molekülions $Ph_8Si_4^+$, das ein weiteres Mal die Bruttoformel⁴⁻⁶ bestätigt und nach energetischen Betrachtungen (siehe oben) sicher durch Entfernen eines Bindungselektrons aus einer Si-Si-Bindung entsteht; es hat somit Struktur V. Eine schrittweise Kettenverkürzung um jeweils ungeladene Ph_2Si -Einheiten¹² führt in lückenloser Reihe $V \rightarrow VI \rightarrow VII$ bis zum Ph_2Si^+ VIII. Natürlich dürfte auch der Verlust grösserer Einheiten $(Ph_2Si)_n (n=2, 3)$ möglich sein, siehe $V \rightarrow VIII$ und $VI \rightarrow VIII$. Eine ähnliche Reihe führt über das aus V durch Phenylabspaltung entstehende Ion $IX \rightarrow X \rightarrow XI$ bis zu PhSi⁺ XII. Bemerkenswert ist dabei die Häufigkeit des Ions $Ph_5Si_3^+$ X. Es ist das dritthäufigste überhaupt, siehe Tabelle 1. Vielleicht führen mehrere Wege zu ihm, insbesondere eine Umlagerung (1) unter Abspaltung eines Ph_3Si -Radikals, $V \rightarrow X$. Offenbar besitzt es zudem eine erhöhte Stabilität. Deshalb wird neben der zu erwartenden biradikalischen Struktur die des Dreirings X in Betracht gezogen. Aus diesem kann das um einen Phenylrest ärmere Ion XIII entstehen, das, wie nun schon naheliegend, auf dem

^{*} Über das kurzzeitige Auftreten ungeladener monomerer Diphenylsilicium-Einheiten in Lösung ist mehrfach diskutiert worden; siehe die Übersicht von Nefedow und Manakow¹².

^{**} Siehe z.B. Ref. 13; dort weitere Literatur. Phenylwanderungen über die aufzuspaltende Bindung hinweg vom Kohlenstoff zum Stickstoff fand z.B. Webster¹⁴.

^{***} Die Beteiligung y-ständiger und anderer Partner bei der McLafferty-Umlagerung ist bekannt. Siehe Ref. 15; dort weitere Literatur.

Wege XIII \rightarrow XIV \rightarrow XII zerfällt. Spaltung einer mittelständigen Si–Si-Bindung in V unter Umlagerung (1) würde das Auftreten von XV erklären.

Tritt eine solche Spaltung unter Phenylwanderung (1) am ionischen Ende der Kette ein, so entsteht sowohl aus V wie VI, oder vielleicht auch anderen Teilchen, das Ion $Ph_3Si^+ XVI$. Es ist das häufigste aller nachgewiesenen Ionen; die eben genannte Phenylwanderung ist also begünstigt. Weiterhin ist, wie erwähnt, auch eine Abspaltung des ionischen Kettenendes ohne Phenylwanderung als Ph_2Si^+ VIII denkbar, z.B. V \rightarrow VIII oder VI \rightarrow VIII.

Das entwickelte Schema umfasst nicht alle ablaufenden Spaltungen, wie schon aus dem Auftreten der Kationen Biphenyl, Phenyl, C_6H_4 und C_6H_3 folgt. Die letzten beiden zeigen, dass auch H-Abspaltung an den Phenylkernen auftritt.

Ferner treten metastabile Ionen auf, z.B. bei m/e = 127, 225, 255, 275, 302, 327. Dasjenige bei 127 stützt den postulierten Übergang (siehe Schema 1) XVI \rightarrow VIII, das bei 225 VII \rightarrow XI, das bei 302 V \rightarrow X, das bei 327 X \rightarrow XIII.

(2). Decaphenylcyclopentasilan

Auch bei dieser Verbindung ist das Molekülion, hier $Ph_{10}Si_5^+$, stark vertreten und beweist damit erneut das Molekulargewicht des Pentasilans⁶. Das Muster der Kationen, siehe Tabelle 1, erweist ähnliche Abbaumechanismen wie beim Tetrasilan IV. Nur in sehr geringem Masse treten phenylärmere Spezies $Ph_9Si_5^+$ und $Ph_8Si_5^+$ auf. Dagegen führt Abspaltung eines ungeladenen carbenanalogen Teilchens Ph_2Si zum Ion $Ph_8Si_4^+$ V und von da weiter, wie im Schema 1 gezeigt. Ein dritter Weg beginnt mit einer Spaltung unter Phenylwanderung (1): $Ph_{10}Si_5^+ \rightarrow Ph_3Si^+ + Ph_7Si_4^+$ IX. Er ist bevorzugt, denn IX tritt hier ungewöhnlich stark auf. Daraus folgt, dass das Molekülion $Ph_{10}Si_5^+$ direkt die Vorstufe von IX ist, und nicht etwa (so wie beim Zerfall von IV) das Ion V. Beim weiteren Abbau tritt, wie schon bei IV, das Ion $Ph_5Si_3^+ X$ sehr stark hervor, was mehrere Wege seiner Entstehung, z.B. $XIV \rightarrow X + Ph_3Si^*$, aber auch eine besondere Stabilisierung durch Ringschluss vermuten lässt. Insgesamt ist das durch Umlagerungen vom Typ (1) entstehende Ph_3Si^+ wieder das häufigste Ion, wie schon bei IV.

Auch hier treten metastabile Ionen auf, z.B. bei $m/e=302 (V \rightarrow X)$, 327 (X \rightarrow XIII), 357, 430, 462 (Ph₁₀Si⁺₅ \rightarrow IX) und 505.

(3). Dodecaphenylcyclohexasilan

Das Molekülion $Ph_{12}Si_6^+$ ist schwach, jedoch deutlich auszumachen, siehe Tabelle 1. Als nächstes Abbauprodukt tritt das Ion $Ph_9Si_5^+$ auf (Verlust von Ph_3Si^+) und dann, stärker, $Ph_8Si_5^+$. Häufigstes Ion ist Ph_3Si^+ , wie unter (1) und (2), zweithäufigstes bemerkenswerterweise wieder $Ph_5Si_3^+$ X.

B. PERPHENYLCYCLOGERMANE

Tabelle 2 enthält die im Massenspektrometer nachgewiesenen Ionen aus allen drei Cyclogermanen I, II und III. Die im Vergleich zu den Cyclosilanen labileren Ph-Ge- ($D \approx 67$ kcal/Mol) und Ge-Ge-Bindungen ($D_{Ge-Ge} \approx 45$ kcal/Mol¹¹) bewir-

TABELLE 2

KATIONEN, DIE BEI DER MASSENSPEKTROMETRIE VON Ph8Ge4. Ph10Ge5 UND Ph12Ge6 AUFTRETEN

m/e	Kation	Intensitäten			
		Ph ₈ Ge₄	Ph10Ge5	Ph12Ge6	
1361	Ph12Ge6			3	
1284	Ph ₁₁ Ge ₆			1.5	
1207	Ph ₁₀ Ge ₆			7	
1134	Ph ₁₀ Ge ₅		12	4	
1057	Ph.Ge.		2	12	
980	Ph ₈ Ge ₅		1.5	41	
907	Ph ₈ Ge ₄	21	4	3	
830	Ph ₇ Ge ₁	1	6	3	
753	Ph ₆ Ge ₄	1.5	71	16	
680	Ph ₆ Ge ₃	2	3	5	
603	Ph ₅ Ge ₃	4	5	4 .	
531	Ph ₅ Ge ₂	5	14	10	
526	Ph ₄ Ge ₃	5	14	10	
454	Ph ₄ Ge ₂	5	5	5	
377	Ph.Ge.	1.5	15	12	
304	Ph ₃ Ge	10	100	100	
227	Ph,Ge	80	11	22	
150	PhGe	100	71	64	

ken, dass grosse und mittlere Ionen seltener auftreten, so dass man aus allen drei Cyclogermanen hauptsächlich Ph_3Ge^+ , Ph_2Ge^+ und $PhGe^+$ erhält. Ersteres zeigt, dass auch hier Phenylwanderungen bei der Spaltung von Ge-Ge-Bindungen möglich sind und leicht eintreten. Jedenfalls sind bei allen drei Cyclogermanen die Molekül-

ionen deutlich nachweisbar und erhärten die früher von uns gefundenen Molekulargewichte^{2,3}.

(1). Octaphenylcyclotetragerman

Man findet lückenlose Reihen [analog wie unter A(1)]:

 $\begin{array}{c|c} Ph_8Ge_4^+ & \xrightarrow{-Ph_2Ge} & Ph_6Ge_3^+ & \xrightarrow{-Ph_2Ge} & Ph_4Ge_2^+ & \xrightarrow{-Ph_2Ge} & Ph_2Ge^+ \\ \hline & -Ph & & \\ Ph_7Ge_4^+ & \xrightarrow{-Ph_2Ge} & Ph_5Ge_3^+ & \xrightarrow{-Ph_2Ge} & Ph_3Ge_2^+ & \xrightarrow{-Ph_2Ge} & PhGe^+ \\ \hline & -Ph & & \\ -Ph & & & \\ Ph_6Ge_4^+ & \xrightarrow{-Ph_2Ge} & Ph_4Ge_3^+ (?) \end{array}$

Weitere Übergänge zwischen diesen Reihen sind denkbar. Jedenfalls zeigt sich das ungeladene, carbenanaloge Teilchen Ph_2Ge als eine der bevorzugten Austrittsgruppen. Eine andere ist, wie erwähnt, das Ion Ph_3Ge^+ , das ungeladene und deshalb nicht nachweisbare Fragmente hinterlässt. Von den in Tabelle 2 aufgeführten Ionen bleiben noch $Ph_5Ge_2^+$ und $Ph_4Ge_3^+$, die wegen der sich überlagernden Isotopenpeaks nicht getrennt ausgewertet werden konnten, die aber zwanglos auch analog zu XV und XIII in Schema 1 erklärbar sind.

(2). Decaphenylcyclopentagerman

Das Muster der Ionen führt, ausgehend vom Molekülion, zu einem Reaktionsschema ähnlich dem vorigen:

 $\begin{array}{c} Ph_{10}Ge_{5}^{+} \xrightarrow{-Ph_{2}Ge} Ph_{8}Ge_{4}^{+} \rightarrow \dots \\ \begin{array}{c} -Ph \\ Ph_{9}Ge_{5}^{+} \xrightarrow{-Ph_{2}Ge} Ph_{7}Ge_{4}^{+} \rightarrow \dots \\ \begin{array}{c} -Ph \\ Ph_{8}Ge_{5}^{+} \xrightarrow{-Ph_{2}Ge} Ph_{6}Ge_{4}^{+} \rightarrow \dots \end{array} \end{array}$

Ausserdem finden in hohem Masse Ph_3Ge^+ -Abspaltungen statt, analog zu den bisher besprochenen.

Das starke Auftreten von $Ph_6Ge_4^+$ ist auffällig. Als Ursache käme ein Ringschluss in Betracht, ausgehend von $Ph_9Ge_5^+$ oder $Ph_7Ge_4^+$, vielleicht aber auch die Abspaltung von Ph_4Ge aus $Ph_{10}Ge_5^+$, die mit zweifacher Phenylwanderung verbunden wäre. Jedoch ist dies hypothetisch.

(3). Dodecaphenylcyclohexagerman

Selbst bei diesem schweren Molekül (Molgewicht 1360.8!) erscheint das Molekülion einwandfrei im Massenspektrum. Phenylwanderungen und -abspaltungen geschehen leicht, wie die häufigsten Ionen Ph_3Ge^+ und $PhGe^+$ erweisen, aber auch die vom Molekülion sich durch ein- bzw. zweifachen Verlust von Phenylresten ableitenden:

$$\begin{array}{c} Ph_{12}Ge_{6}^{+} \xrightarrow{-Ph_{2}Ge} Ph_{10}Ge_{5}^{+} \rightarrow \dots \\ \begin{array}{c} -Ph \\ Ph_{11}Ge_{6}^{+} \xrightarrow{-Ph_{2}Ge} Ph_{9}Ge_{5}^{+} \rightarrow \dots \\ \begin{array}{c} -Ph \\ -Ph \\ Ph_{10}Ge_{6}^{+} \xrightarrow{-Ph_{2}Ge} Ph_{8}Ge_{5}^{+} \rightarrow \dots \end{array}$$

Im übrigen ist der weitere Abbau wieder durch schrittweisen Verlust von Ph_2Ge -Einheiten gekennzeichnet.

Auffällig ist das drittstärkste Ion (siehe Tabelle 2) $Ph_8Ge_5^+$. Wieder handelt es sich um dasjenige Ion (siehe voriger Absatz), das aus dem Molekülion—oder dem Molekül selbst—durch Verlust von Ph_4Ge entstanden sein könnte.

C. DODECAPHENYLCYCLOHEXASTANNAN

Tabelle 3 bringt die aus dem einheitlichen, gut kristallinen Produkt^{7,8} entstehenden Ionen. Wie nach den unter A und B beschriebenen Erfahrungen und der im Verhältnis zu den Ph-Ge-Verbindungen noch leichteren Spaltbarkeit der Ph-Snund der Sn-Sn-Bindung ($D \approx 61^{16}$ bzw. 39* kcal/Mol) zu erwarten, treten kein Molekülpeak und auch keine Bruchstücke mit mehr als 2 Sn-Atomen auf, wohl aber

TABELLE 3

KATIONEN, DIE BEI DER MASSENSPEKTROMETRIE VON Ph₆Sn₁₂ AUFTRETEN

m/e	Kation	Int.	m/e	Kation	Int.
700	Ph ₆ Sn ₂	3	350	Ph ₃ Sn	100
623	Ph ₅ Sn ₂	3	273	Ph ₂ Sn	57
546	Ph ₄ Sn ₂	3	196	PhSn	86
469	Ph ₃ Sn ₂	1	154	Ph,	4
427	Ph₄Sn	1	119	Sn	78
392	Ph_2Sn_2	1			

mehrere Produkte von Umlagerungen (1) des McLafferty-Typs^{13,15}. Ph₃Sn⁺ ist am stärksten vertreten. Interessant sind die vielen Sn-Atome, die sämtliche Liganden verloren haben, sowie die kleine Menge an Ph₄Sn⁺, durch zweifache Phenylwanderung entstanden. Die Tetraphenyl-Verbindung war ja schon beim Ge (siehe B) als Bruchstück vermutet worden.

BESCHREIBUNG DER VERSUCHE

Ausgangsmaterialien

 Ph_8Ge_4 I, $Ph_{10}Ge_5$ II und $Ph_{12}Ge_6$ III wurden dargestellt, wie früher von uns angegeben³. Ph_8Si_4 IV wurde nach Gilman *et al.*⁴⁻⁶ dargestellt, $Ph_{10}Si_5$ und

^{*} Dieser Wert¹¹ beruht auf ähnlichen Schätzungen wie diejenigen, die oben für die Si-Si- und Ge-Ge-Bindung¹¹ benutzt wurden. Deshalb wird er hier beibehalten, obwohl der Wert von 50 kcal/Mol eher zutrifft⁸.

Ph₁₂Si₆ erhielten wir unter Variation der Literaturvorschriften⁶ aus Ph₂SiCl₂ und Natriumnaphthalin².

Massenspektrometrie

Alle Messungen wurden mit dem doppeltfokussierenden Gerät MS 9 der Firma AEI ausgeführt. Beschleunigerspannung 8 kV (bei $Ph_{12}Si_6$ und $Ph_{12}Ge_6$ 4 kV), Elektronenenergie 70 eV, Temperatur der Ionenquelle 220–250°, Druck in der Ionenquelle $1 \cdot 10^{-6}$ mm Hg.

Molekülpeaks wurden nur dann erhalten, wenn die Probe unter Aufhebung des Vakuums von Hand in die Ionenquelle gebracht wurde. Verwendung einer Automatik mit Schleuse bedingte andere Intensitätsverteilungen in den Massenspektren, wobei einige höhere Massen und insbesondere die Molekülpeaks fehlten.

Metastabile Ionen treten in den meisten (nicht allen) unserer Massenspektren auf. Ihr Erscheinen und ihre Stärke hängen stark von geringfügigen, oft unbeabsichtigten Veränderungen der Messbedingungen ab, so dass wir sie nur orientierend für die Auswertung heranzogen. Unter anderen Bedingungen¹⁷ treten bei Verbindungen (Ph₂Si)_n noch weitere, bei unseren Messungen nicht vorhandene metastabile Ionen auf.

Einzelne Peaks haben Satelliten, die um 1-3 Masseneinheiten leichter sind (Wasserstoff-Verlust der Phenylkerne).

Da zumindest bei m/e-Werten oberhalb 1000 und bis zu 6 Ge-Atomen pro Molekül eine Auswertung nach monoisotopischen Peaks unmöglich war, gingen wir so vor, dass wir jeweils die zu einem Ion gehörigen, durch die verschiedenen Isotopen von Si bzw. Ge bedingten Peaks addierten und mit dem m/e-Wert des Schwerpunktes der Peakgruppe in den Tabellen 1–3 aufführten. Die stärkste Peakgruppe jeder Verbindung wurde, wie üblich, gleich 100 gesetzt.

DANK

Wir danken den Farbwerken Hoechst A.G. und insbesondere Herrn Dr. H. REHLING für massenspektrometrische Messungen, dem Germanium Research Committee, Kansas City, Miss. für eine Probe elementaren Germaniums, den Farbenfabriken Bayer A.G. für Phenylsilicium-Verbindungen, der Deutschen Forschungsgemeinschaft für Sachbeihilfen.

Unabhängig von uns haben KINSTLE, HAIDUC und GILMAN massenspektrometrische Untersuchungen an Cyclopolysilanen ausgeführt¹⁷, wie uns Herr Prof. HENRY GILMAN, Iowa State University, anlässlich seines Besuches in Giessen am 8. September 1967 nach Abschluss unserer Studien¹ mitteilte. Wir danken ihm besonders für wertvolle Diskussion und den Vorschlag, die beiderseitigen Ergebnisse gleichzeitig zu publizieren.

LITERATUR

- 1 W. P. NEUMANN, Vortrag im Seminar der Harvard University, Cambridge/Mass., Dept. of Chemistry, 7. Juni 1967.
- 2 W. P. NEUMANN UND K. KÜHLEIN, Tetrahedron Lett., (1963) 1541.
- 3 W. P. NEUMANN UND K. KÜHLEIN, Justus Liebigs Ann. Chem., 683 (1965) 1: 702 (1967) 13.

- 4 H. GILMAN, D. J. PETERSON, A. W. P. JARVIE UND H. J. S. WINKLER, J. Amer. Chem. Soc., 82 (1960) 2076; 83 (1961) 1921, 4089.
- 5 H. GILMAN UND G. L. SCHWEBKE, J. Amer. Chem. Soc., 85 (1963) 1016; 86 (1964) 2693.
- 6 H. GILMAN UND G. L. SCHWEBKE, Advan. Organometal. Chem., 1 (1964) 89.
- 7 W. P. NEUMANN UND K. KÖNIG, Angew. Chem., 74 (1962) 215; Justus Liebigs Ann. Chem., 677 (1964) 1.
- 8 W. P. NEUMANN, Die Organische Chemie des Zinns, Verlag Enke, Stuttgart, 1967.
- 9 D. B. CHAMBERS, F. GLOCKLING, J. R. C. LIGHT UND M. WESTON, Chem. Commun., (1966) 281; dort weitere Literatur.
- 10 J. J. DE RIDDER UND G. DUKSTRA, Rec. Trav. Chim. Pays-Bas, 86 (1967) 737; J. J. DE RIDDER, G. VAN KOTEN UND G. DUKSTRA, Rec. Trav. Chim. Pays-Bas, 86 (1967) 1325.
- 11 T. L. COTTRELL, The Strengths of Chemical Bonds, Butterworths, London, I. Aufl., 1958.
- 12 O. M. NEFEDOW UND M. N. MANAKOW, Angew. Chem., 78 (1966) 1039.
- 13 F. W. MCLAFFERTY, Chem. Commun., (1966) 78.
- 14 B. R. WEBSTER, Chem. Commun., (1966) 124.
- 15 C. DJERASSI, M. FISCHER UND J. B. THOMSON, Chem. Commun., (1966) 12.
- 16 H. A. SKINNER, Advan. Organometal. Chem., 2 (1964) 49.
- 17 H. GILMAN, persönliche Mitteilung; T. H. KINSTLE, I. HAIDUC UND H. GILMAN, J. Org. Chem., im Druck.